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Self-consistent field theory of multiply branched block copolymer melts
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We present a numerical algorithm to evaluate the self-consistent field theory for melts composed of block
copolymers with multiply branched architecture. We present results for the case of branched copolymers with
doubly functional groups for multiple-branching generations. We discuss the stability of the cubic phase of
spherical micelles, thé15 phase, as a consequence of the tendency oABaterfaces to conform to the
polyhedral environment of the Voronoi cell of the micelle lattice.
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I. INTRODUCTION fined self-consistent brush analysis for dendritic copolymer
melts[14]. Both works showed a similar increase in stability
Block copolymers provide an ideal route to engineeringof high-interface-curvature phases. Despite the analytic
well-controlled structure on nanometer length scateg]. transparency of these SST calculations, the results of these
Through control over the chemical architecture, these syscalculations are predicated on many assumptions about the
tems can be tuned to self- assemble into periodic structuregetailed structure of the micellar aggregates. In particular,
of an astounding variety. A plethora of new phases and strucsertain assumptions must be made concerning the interfacial
tures have been identified in dilute diblock systefBs4], shape and direction in which copolymer chains stretch in the
triblock systemg5], and confined diblock§6]. One might —aggregate$8,12]. Because the free energy differences be-
think that there is hardly more to say about the melts of théween phases are small, the presence of these undetermined
simplest of block copolymer architectures, the neat liner degrees of freedom makes_ the task of Iocatmg.the true free
diblock copolymer. It is well known that these linear diblock €N€rgy ground state analytically cumbersome, if not impos-
copolymers display a host of ordered phases: spheres, cyliSiP!€:

: ; In Sec. Il we present the theoretical derivation of the
ders, lamella, and the bicontinuous gyr¢®l. However, we )
have argued8,d] that the tendency to minimize th&B in-  SCF 1 for multiply branched copolymer melts from the full
— classical partition function of this system. We present an al-

terfacial area should stabilize a new cubic phase WitlBn  gorithm for the SCFT of block copolymers within a specific
symmetry, theAl5 lattice. The subsequent synthesis andglass of multiply branched architectureee Fig. 1 Like the
characterization of PEO-docosyl dendrimeric diblocks cor-SCFT approaches of Matsen and Schick for lindeB
roborated our predictiofil0] and was in agreement with the diblock copolymerg15] and for(AB), starblock copolymers
self-consistent field theorySCFT) phase diagram for mik- [16], this approach makes no approximation beyond the ap-
toarm star copolymer§8]. In this article, we provide the proximation of the mean field in the monomer concentration
details of SCFT for branched architectures and, to ouprofile. Therefore, this SCFT fully captures the copolymer
knowledge, the first SCFT phase diagrams for true, multiplychain fluctuations in the presence of the average concentra
branched dendritic diblock copolymers. tion profile of constituent monomers. Moreover, this ap-
The serial development of new chemical synthesis routeproach efficiently minimizes over all possible copolymer
is typically a costly and slow means for exploring the con-configurations, precluding the variational assumptions often
sequences of novel copolymer architectures. It is thereforeecessary in the SST calculations. Finally, a numerical
desirable to develop theoretical tools for the efficient comimplementation of SCFT is not limited to the infinijgN
putation of the phase behavior which can systematically maparameter range. Given an arbitrary amount of computing
out novel phase properties for a broad class copolymer archiime the equilibrium phase can be determined for any finite
tectures. Olmsted and Milner developed a strong-segregatioralue of yN. Practically, SCFT provides an efficient means
theory (SST) approach to the phase behavior&gB,, mik-  of computing the mean-field free energy of most phases for
toarm star copolymer melts, applicable in thl— « limit, xN=100[17]. In Sec. lll we present the results of an appli-
wherey is the Flory-Huggins immiscibility parameter aibtl  cation of SCFT to a series of branched copolymer melts
is the total number of chemical segments in the copolymewithin a specific class of this structural motif: specifically,
[11,12. For asymmetric copolymers—say, for>m—the  copolymers which branch doubly with each successive gen-
effective spring constant of the more abundant polymeeration. We discuss these results in the context of elastically
block isn?/m? times more stiff than other block. Such asym- asymmetric copolymer melts and the geometry of &&
metry leads an enhanced stability of phases with a strongnterface. We conclude in Sec. IV.
interfacial curvature, and thus, spherical and cylindrical mi-
celles are predicted to dominate the phase behavior for Iargu: SELF-CONSISTENT FIELD THEORY FOR BRANCHED
molecular asymmetrj/l1]. Fredrickson and Frischknecht in- ARCHITECTURES
troduced an approximate SST approach to multiply branched Our approach to multiply branched diblocks is an exten-
dendritic copolymer$13], and Pickett developed a more re- sion of the SCFT approach to linear diblocks and starblock

1539-3755/2005/15)/05180111)/$23.00 051801-1 ©2005 The American Physical Society



G. M. GRASON AND R. D. KAMIEN PHYSICAL REVIEW E71, 051801(2005

B (sN)th segment of thesth chain. At this point, we do not
introduce an explicit parametrization of the full branched
configuration. It suffices to demand that the first-generation
curve be joined ton, second-generation curves which are
each joined tops third curves, etc. Given this set of branched
curves, we define the dimensionless segment density opera-
tors

N1
3 =23 [ dsyestr -1 49, @

Pop=1Jo

S0 R N n 1
51 ¢a(r)=—2 | df1-%9Je(r -149), ()

S9 Pop=1J0

wherey(s) is a function which is equal to 1 whexlies along

an A portion of the chain and 0 wheis along aB portion

of the chain, and the integration range is over the entire

branched curve. In a neat system, the allowed melt configu-

rations are incompressible, and thus we are constrained to

consider configurations for which

FIG. 1. (Color onling. A schematic of the branched molecular “ ~

architecture. The first-generatioh block containsfN segments. Pa(r) + ¢p(r) = 1. (4)

Each higher-generatioB block is composed of1-f)N/\ seg- The full partition function for the melt is the functional

ments. Here, the branching of each generation is 2. In the mear?htegral ovem branched curves:

field approximation, it is necessary to define only a single coordi-
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nates, for the set of branching points of theth generation. 1 n R R
2= | TT1drgle1 - éar) - ge(r)]
copolymers pioneered by Matsen and Schitk,16. While e )
the derivation of the mean-field free energy for the mulitply 3 2 . 9
branched system follows directly from the results for the Xexp) — 2Na? ), ds(n(s) + <1 = A HIF p(5)]
linear and starblock architectures, we present its full deriva-
tion here since subsequent evaluation of that free energy re- dr ~
quires a slightly more generalized approach. Nevertheless, = Xxpo | droa(r)ee(r) r, 5
where possible, we attempt to keep the notation consistent
with theirs. where a normalization factor is absorbed into the functional

We consider a system of total volumé& containingn measure[dr ], r(s)=dr(s)/ds, k=a,/ag measures the rela-
branched copolymers. These copolymers are each compostde length of theA andB segments, and=a,. The Flory-
of N total segments. Without loss of generality, we define theHuggins parametex characterizes the repulsive interaction
segment volume for both monomer types to,dgé, so that  between unlike monomers.

the total volume of the system ¥=nN/p,. The statistical We can use the identitf[d(DA,B]éﬁbA,B(r)—%A,B(r)]=1
segment lengths for th&- andB-type monomers are denoted tq transform Eq(5) into a functional integral over the mono-
by a, andag. The volume fraction oA-type monomer in the e gistributions. Introducing fields conjugate to the total
system is denoted b Thus, each chain is composedf®  anq individual segment concentrations, we have explicit rep-
A-type segments and —f)N B-type segments. The architec- esentations of the delta functionals,

ture of our molecule is shown in Fig. 1. The first generation

is a singleA block. Grafted onto this arég—1) generations 1 = da(r) - da(n)] :f [dE]exp{@ f drE(r)

of equal-lengthB blocks. The branching of thath genera- N

tion is given by, so that the total number & blocks, Vg,

is given by X[1 = a(r) - &B(f)]} (6)
Ng= (1 +mg(L+ (... (L+ g a(1+779)...) . (D)

We define a coordinate along the polymgrso that within
any chain portion of lengti\s there are(As)N segments. S Ppp(r) - {;,AB(r)]:f [dW, B]exp{@ferAB(r)
Thus, in these coordinates, the length of gblock is given ' ’ ' N '
by As,=f and that of theB sections is given bylsg=(1 ~
-f)/ Ng. X[Ppp(r) = dap(r)] (. (7)
A particular melt configuration is specified Inybranched
curves in spacer 4(s), the course-grained position of the where the limits of integration of the conjugate fields are

and
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*ioo. Inserting these representations and the above identitseplaced the problem of multiply branched chains mutually
into Eq. (5) and integrating over the delta functions in Egs. interacting, with the problem of noninteracting chains sub-

(2) and (3), the full partition function is given by ject to the fieldsv(r) andwg(r). These fields are chosen to
1 represent the mean-field interactions produced by the mono-
Z== J [dE][dWAI[dWi][dd A][dDg] mer distributionsga(r) and ¢g(r), That is, from Eqs(10)
n!

and(11) it is clear thatA-type (B-type) monomers experience
p{ n a repulsion proportional toyN times the local density of

X {Q[Wi(r), Wg(r)]}" exp) — — f dr {xND A(r)Pg(r) B-type (A-type) monomers and a repulsion due to the overall
v incompressibility of the system, given r). Because the

= W(r)Da(r) = Wg(r)®g(r) — E(r) mean-field incompressibility constrai(it2) depends only on
the total monomer density(r) contributes equally to both

X[1=Du(r) - @B(r)]}}, (8) potentialsw,(r) andwg(r). Hence, we see thdtr) is simply
the Lagrange-multiplier field which allows us to fix the com-

where Q[W,(r),Wa(r)] is the partition function for a single Pined, local segment concentrationdg Moreover, the av-

noninteracting, branched chain subject to the spatial ﬁel(?rirsgt?o?\esgg:(e;gtlglescint?;thoomrﬁi)t;;ectsiggp(%ff\ri]r?sasvuel;?e%? ?olst-he

W,(r) acting on first generation of the chain av(r) act- : .

ina on the Eigher ger?erations: e fieldswa(r) andwg(r). Thus, Egs(10)—(13) provide a fully
self-consistent set of equations, which can be solved to yield

n 1 the mean-field result. Once the,(r) andwg(r) are found,
Q[Wa(r), We(r)] = ;[l[drﬁ]ex - fo ds we can compute the mean-field free energy per chain,
3 . F __ _\1
x[ws)(ZNazhﬁ(s)F o= Te-V f dr [Wa() () +We(r) dg(r)]
+ WA(rB(S))) +[1-99)] + V_lf dr xNepa(r) g(r). (14
3% . 2 The first line of Eq.(14) gives the entropy per branched
X(ZNa2|rB(S)| +WB(rB(S))>”' chain, and the second line gives the enthalpic, or interaction,

contribution to the free energy.
9 For a given set of monomer potentiaig(r) andwg(r), Q
In general, it is not possible to evaluate the functional inte-c@n be evaluated. We start by defining the Green’s function,
grals in Eq.(8). Nevertheless, in the limit whe is large,  ©F propagator, for a continuous, unbranched portion of the
fluctuation contributions to the partition function are small, chain,

and the integral is dominated by its saddle point, where the r S 3
free energy per chain,(kgT/n)In Z, is minimal[18,19. The G(ri,s:r,S) = f [dr zlexp) - f ds{—|ilg(s)|2
saddle-point approximation, of course, yields the mean-field r 5 2N&
results. 342

To obtain the mean-field result, we solve for the field +WA(|’B(S)):|'}/(S)+|: S|P (97
configurations [ ¢a(r), dg(r),wa(r),wg(r),&(r)], which 2Na

minimize the free energfthat is, thelowercasefunctions are
the extremal values of theppercasgunctions. Minimizing +Wa(r4(9) [[L-¥9)] ¢, (15
with respect tob(r), ®g(r), and=(r), respectively, we ob-

tain the mean-field equations where this path integral is carried out over all pathgs),

Wa(r) = xNgpg(r) + &(r), (10)  such that g(s)=r; andr g(s;) =r . We absorb a normalization
into [dr ] so that the integral of the propagator over the
Wg(r) = xNa(r) + &(r), (11 coordinates; andr; is independent of arc length,—s;. This
is the same as demanding that the probability of any portion
1= a(r) + g(r). (12)  of this chain havingany configuration(in the absence of

external potentiajsbe independent of the number of seg-
ments it contains. Note th&(r;,s;r,Ss) is identical to the
imaginary-time quantum mechanical amplitufeith s—

Minimizing with respect toW,(r) and Wg(r), respectively,
we find expressions for the mean-field densities,

nN 89 —it) for a particle of masNa?/3 [or Na?/3x? when y(s)
dap(r) = O oW : (13 =0] in the potential wa(r) [or -wg(r) when y(s)=0] mov-
PoQ MWng(r) ing from r; at the initial “time” s to r; at a later “time”s;.
where we have define@ = Q[w(r),wg(r)]. Therefore, we know thab(r;,s;;r¢,ss) obeys the imaginary-

Upon inspection, it is clear how these relations constitutdime Schrodinger equation, or diffusion equation, and, unlike
the mean-field theory result of the full problem. We haveits interpretation in quantum mechanics, represents a prob-
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lims s G(ri,s;r¢,s)=0d(r¢=ry), then we establish a set of
boundary conditions foq'(r ,s) at its free end as; and each
branching point,

‘ . q'(r,sy) =1, (17)

a'(r,s;) =["(r o, S0)]171, (18)

whereq'(r,s,) is the limit of the function as approaches,
from below (just after the branching pointThus, at a given
branching points, the value ofq'(r,s) changes discontinu-
ously, fromq(r ,Sy) to qf(r ,S,), since the function assumes
the probability of the other higher-generation branches meet-
ing it at that point.

Becauseq'(r,s) is defined in terms of the propagator
G(ri,s;r4,5), we know that it will obey the same diffusion
equation as the propagator. Namely,

S0

FIG. 2. (Color onling. A schematic representation of the prob-
ability captured by the end-distribution functiog¥r ,s) andq(r ,s) (?qT
for a four-generation molecule. For the poistq'(r,s) is propor- -—=

N 2
%Wq* —wa(ng', forsy<s<s,,

tipnal to the probe.\t.)ility that the dasheq portion. of the chain has s N_ajvzq‘r _WB(r)q‘r' fors, <s< Sy-

diffused to the positiom. For the same poing(r,s) is proportional 6k

to the probability that the dotted portion of the chain has diffused to (19)

the same position. The probability that the point ig &t s is the

product ofq andq'. It should be understood that we will solve these first-order

equations for the unbranched portions of the chain and use of

ability and not an amplitude. We make explicit use of this the branching points to determine boundary conditions;

fact below. hence, we do not need to worry about differentiating at
To capture the branched architecture of the chain we déranching points. _ o

fine the end-distribution functions. These functions compute Because Eq(19) is a linear equation fog" which is first

the statistical weight of a chain diffusing along its trajectoryOrder ins, given any set of fieldsva(r) andwg(r), we can

to some position in space. That is, we define a functiorsolve forg'(r,s) for all segments. First, using Eq4.9) and

q'(r,s), which is proportional to the probability that the (17)we solve for theg'(r,s) for thegth generation. Then, we

branched chain diffused from one of its free ends,awhere ~ can use Eqs(19) and(18) and our solution fog'(r,s;-y) to

s, is the length coordinate corresponding to the branchingolve for the(g—1)th generation ofg'(r,s). Likewise, we

point of ath generation(see Fig. 1 Note that fors, ;<<s  can then iteratively solve for all lower generations until we

<s, this function is simply the probability that an un- get to the first.

branched chain diffused from its free endstat some posi- Once the value off'(r,s) is known for alls down tos,,

tion r. But if s, ; <s<sy, then q'(r,s) is proportional to  we can compute the single-chain partition by integrating this

the probability thaty, free ends diffused fronsy to some  backward-motion end-distribution function over the position

intermediate position—say,,_—at s,-; and then diffused of the free end of the\ block,

ontor ats(see Fig. 2 Thus, as decreases towards the free

end of theA block ats,, qT(r ;) assumes the probability of 0 :f drgf(r,sy). (20)

all higher generations diffusing “into” this lower-generation

Pranch. we wiII.ref?r to this diffgsion frors, towardss, 8S " However, in order to compute the mean-field melt free en-
backward motion.” Note that in terms of the probability ooy \ve need to calculate the average monomer distributions
dlstrlbut!ons all paths dlffusmg from any of th:g*g free ends #a(r) and g(r) created by the monomer potentials(r)
arev\?quwalent,. andhther't)efor@ér%§)_ IS WE” def|.ned.. . andwg(r). By introducing another end-distribution function

e summarize the above definition xwrlth@(r,s) n q(r,s), we can compute the functional derivative of -€hn
terms of our unbranched propagatGif;, s;;+,s): with respect to these fields directly.

We defineq(r,s) to be proportional to the probability that

qT(r'S):JdraG(r,S;ra,sa)[qT(ra,SZ)]”a+1’ a chain configuration diffuses in the “forward” direction
from its other free endthe free end of théA block atsp)
for s,_; <S<Ss,, (16)  along one of the branched trajectories of the molecuteab

the positionr (see Fig. 2 At the branching pointss,, q(r,s)
whereq'(r,,s!) indicates that we take the value of this func- assumes the probability thaty,.,—1) branches have also
tion from the end of the higher generationsat(just before  diffused from their free ends a tor, ats,. This is to say
the branch point If we normalize our propagator so that thatq(r,,s,) contains not only the probability that tlsgend
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diffused to this point but also the probability that all of the
other branches, not including the currently diffusing path,
have diffused tor, at s, to meet it. This property makes
q(r,s) convenient for computing the average monomer dis-
tributions. Using the above definition we have

q(r,s) = f dr ,G(r 0, ST, 9)A(r 6, SLAT( S 2,

for s, < s<<Sg. (21)

The corresponding boundary conditions &gr ,s) are given
by

q(r,sp) =1, (22)

40F
a(r,sy) = a(r,s)[A"(r )17 (23 :
35
Since the “motion” of the diffusion along the chain is re- i
versed from that ofi(r ,s), the diffusion equation fog(r ,s) 30F
is the same as Eq19) except with a plus sign appearing on '
the left-hand side. In analogy with'(r,s), we must first
solve the diffusion and Eq22) for the first generation of _
q(r,s). We then use our second-generation solution of 2ok
q'(r,s) and the first-generation solution gfr ,s) in Eq. (23 i
to find the solution for the second generation. We can repeat
the process to solve fay(r,s) over the entire length fromg,

N

25 F

15F

to Sy- 10 : A ) . .
It is not difficult to show that the monomer distributions, 0.2 0.4 0.6 0.8
given by Eq.(13), can be computed by () f

Vv (= FIG. 3. Phase diagrams fg=3 andg=4. Dis labels regions
da(r) = _f dsqr,9)q'(r,s), (24) where the melt is disordered. Stable regions of ordered phases are
Q S labeled (Lam) lamellar; (Gyr) gyroid, 1a3d symmetry; (Hex)
hexagonal-columnap6mm symmetry;(A15) sphere phasé?m3n
v Se symmetry;(bco body-centered-cubic lattice of sphergs3m sym-
—2 Ng “J dsc{r,s)qT(r,s), (25) metry; and(fcc) face-centered-cubic lattice of spherBg3m sym-
Qi Sp1 metry [24]. The circle marks the mean-field critical point through
which the system can transition from the disordered state to the
whereV=nN/p, and N, is the number oB blocks in the Lam phase via a continuous, second-order phase transition. All
ath generation, which is simply given by, 7,1 - 7,. Thus, other phase transitions are first order.
the mean-field free energfl4) can be computed entirely
with the end-distribution functiong(r ,s) andq'(r,s). lll. DOUBLY FUNCTIONAL BRANCHING: THE ROLE
While real-space methods for numerically solving these OF INTERFACES
diffusion equations exist19,20, these methods tend to be  Using the SCFT derived in the previous section we com-
computationally intensive for melt phases with spatial varia-puted theyN=<40 mean-field phase behavior for multiply
tion in three dimensions. Instead, we use Fourier eXpanSiOﬂﬁ'anched c0p0|ymer melts where the branching, or function-
of the functions to solve foq'(r,s) and q(r,s) given an  glity, of each generation is 2. We compute the phase behavior
arbitrary set of external field#/s(r) and wg(r). Since we for g=2,...,6 for monomers of equal segment sizel. To
know that equilibrium structures are themselves infinitely pe-achieve a precision of +18in f and +102in N we require
riodic structures, we expect that we can very accurately dea precision in the free energy of better than #1.(rhis re-
scribe mean-field results with a finite number of Fourierquires the use of up to 908 basis functions for some phases.
terms included in the expansion. For up to moderately larg@he mean-field phase diagrams fo=g§=<6 are shown in
degrees of segregatidfor yN=<50) the spectral methods of Figs. 3 and 4. We have already reported on the phase behav-
[15,1€¢ allow for a rapid and very accurate exploration of jor for g=2, the AB, miktoarm staf8].
mean-field thermodynamickl9]. We present the spectral The thermodynamics of these melts are strongly influ-
form of our SCFT for multiply branched copolymer melts in enced by the introduction of the multiply branched architec-
the Appendix. ture. Compared to the predicted phase behavior of liA&ar

og(r) =
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block copolymer melts, the phase boundaries of these
branched copolymer melts are skewed systematically to-
wards larger values df for most phasegl5]. This indicates

an enhanced preference for phases where the branched poly-
mer domain is on the convex side of curv&H interfaces. In

Fig. 5 we plot the strong-segregatiopN=40) phase bound-
aries as a function of branching generation. The preference
for morphologies with the branchel,domain on the outside

of a highly curved interface increases with increasing gen-
eration. For example, spherical micelles where Ahlelocks
form the core region are stable up te0.275 forg=2 but
stable up taf=0.350 forg=6. This effect is well established
for copolymer architectures with elastically asymmetric
blocks[12,16,21,22

In general, elastic asymmetry stems chiefly from two
sources—asymmetric monomer sizes and asymmetric co-
polymer architecture. Milner demonstrated within SST that
the elastic asymmetry between copolymer blocks ofgB),
miktoarm star is captured by the parameter(n/m)

X (pgad/ paa) Y%, wherep,* and pg* are the respective vol-
umes of theA andB segment$11]. From this analysis it can
be shown that the effective spring constant of Bhérush
domain is a factor of? times the value of the symmetric
case(for e=1). For e>1, the molecular asymmetry leads to
the stabilization of morphologies where tBepolymer block
composes the outer corona of spherical and cylindrical do-
mains for larger values @k composition than is observed for
elastically symmetric copolymef&3].

It is desirable to have a similar quantitative measure of the
elastic asymmetry for copolymers with this multiply
branched structural motif. However, in contrast to the mik-
toarm star architecture, the elastic enhancement of multiply
branched domains depends on the aggregate morphology.

FCC/BCC BCC/Hex Hex/Gyr Gyr/Lam

Fig. 3. Using the Alexander—de Gennes, strong-segregation analysis
employed by Frischknecht and Fredrickson we find, for ex-
ample, that the stiffness of a lamell& domain in these

C T IG L T GI FCC ]
r T T ]

6 F ° ?3? ‘V E

sE s X :
: AlS Hex Lam Dis
: : P P ] FIG. 5. The SCFT phase boundaries com-

> 4 g 9 ® 9 99 E puted atyN=40 for 2<g<6 are depicted as

o ] open circles. For comparison théN=40 phase
F ] boundaries for linear diblocks are indicated of the
o PLPE o f axis. Note the absence of a stabl&s phase for

3 2 m ? ¢ ° ¢ ° ° o B linear AB diblock copolymer melts.

A PR 6 6 E
F BCC Hex BCC ]

Dis/FCC 02 0.4 06 08 FCC/Dis
f

Lam/Gyr Gyr/Hex Hex/BCC BCC/FCC
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doubly functional copolymer melts is enhanced by a factor ofper chain for the case when the Voronoi cell is approximated
4(8971-1)/[7(2971-1)] over the linear, unbranched case as a spher¢9,12]. Given these geometric measures for all
[13]. This corresponds to factors of 4, 1%’;—2:41.7, 156, candidate arrangements of spherical micelles we can assess
and 604 multiplying the stretching free energy of a lamellarthe relative stability of these phases in this limit where the
B domain for theg=2,3,4,5, and 6cases, respectively. ABinterface has the same shape as the unit cell of the lattice.
Pickett demonstrates, however, that the Alexander—d& was discovered by Weaire and Phelan that the space par-
Gennes approximation provides an overestimate of théition of the A15 lattice has the lowest area of all known
branched chain free energy whose error grows quickly withequal-volume periodic partitions of three-dimensional space
the branching generatigi4]. Based on the analysis of Pick- [25]. |t is for this reason, despite the fact that the bcc lattice
ett [14] for a slightly differ_ent copolymer_architectur_e We has a smaller second moment, that &5 lattice is most
might expect that by relaxing the constraint the chain endgiaple among the lattice arrangements of spherical micelles

are held at the tips of the brus_h and the SST stretching freghan AB interfaces have adopted the shape of the Voronoi
energy of the brancheB domain can by relaxed from the cell in which they are confined. In particular, this limit pre-

Alexander—de Gennes upper limit by factors of_ roughly 2.6,diCtS that the free energy per chain for tA&5 phase is

ig ,cig’cgrrgszptg dfsgi[b_sﬁe:é’z Arfl’wiit’oaarrlrorll E;t;)e S.P;:?Zﬁgvhse Ss 0.14% and 0.61% lower than the bcc and fcc phases, respec-

to estimate more realistic values of the elastic asymmetry irt\'VEIy' Of. course, there are finitaN cprrechoqs to this
asymptotic limit due to chain fluctuations which are ne-

the | Il hology: 4 fog=2, 4.6 forg=3, 7.7 f . R
:j fgﬁ fi:gricgpagdogiﬁ f;g:& Whilgrt%ese are soc:r%e- glected in the strong-segregation limit, but the lowest-order

what crude estimates, they provide reasonable correspofR®/Tections which distinguish between morphologies are
dence between the SST phase behavior of these multip aller than the leading-order free energy term by a factor of
branched copolymers anB, copolymerg8]. For example, (xN)™°[26,27.
the respectivqN=40, Gyr-Lam andA\15-Hex transitions oc- The conclusions of our SST analysis are valid in the limit
cur at f=0.546 andf=0.349 for a melt ofAB; miktoarm that theAB interface has adopted the polyhedral shape of the
stars, corresponding to an elastic asymmetry of 25. Thigattice Voronoi cell. It is well known that constraining a mi-
should be compared to the same transitions which occur atelle to occupy a polyhedral unit cell frustrates the internal
f=0.550 andf=0.350, respectively, for g=6 branched co- configuration of the aggrega28,29. Chains which extend
polymer, with an estimated elastic asymmetry of 24.6. along directions towards corners of the Voronoi cell must
We note the stability of the cubidl5 phase in these stretch farther than those extending towards the walls. The
melts. We have arguef®] that asyN—« and in the limit  difference in tension in these chains leads to a tendency to
that the AB interface of a sphere phase is constrained talistort the AB interface from its ideal, uniformly curved
adopt the same shape as the lattice unit cell thatAh® shape into the polyhedral shape of the Voronoi cell. Of
should be the equilibrium structure. In this limit the relative course, the micelle will adopt some compromise between the
stability of competing arrangements of micelles can be asuniform curvature and relaxed outer chain stretching which
sessed purely in terms of two geometric moments of thevill be determined by the relative importance of outer chain
Voronoi polyhedra of the lattice: the area and second mostretching and the forces which pull inward on thB inter-

ment of the lattice. |fo(§) measures the radial distance face: namely, the surface tension and inner chain stretching.

from the center to the surface of the Voronoi cell of lattice We demonstrated8] how the tendency for cylindrical mi-

at solid angleﬁ then we can compute the area in terms Of'c:elles in the Hex phase to adopt a hexagonal interface shape

the area of a spherical cell of equal volume is enhanced both by an increase in the inner domain volume
' fractionf and the elastic asymmetry between the coronal and

Ay on A core polymer domainse. In particular, we found that al-
1 fdQ{Rx(Q) +[VaRx ()]} though AB interfaces in micelles for symmetric molecules
Ay = pPRTE 53 , (26) (e.g., Ii'nearAB diblocks _remain re]atively unperturbed by
(4m fdflRe‘(ﬁ) the lattice symmetry, cylindrical micelles composed of very
elastically asymmetric copolymerns=3) have interfaces

- . ] which are very nearly hexagonal in regions where the Hex
where Vo =60/ 36+ $dl ¢. We can also define the second phase is thermodynamically stable. Given the stability of the

moment, or “stretching” moment, of the Voronoi cell, A15 phase in the present systéFig. 5), it must be that the
interfaces of the sphere phases are also substantially distorted
JdQRi(Q) by the polyhedral environment of the lattice Voronoi cell.
T, = (4m)23 27) We can quantify the extent to whicAB interfaces in
X A A ’5/3’ sphere phases adopt the shape of the Voronoi cells from our
f dQRi(Q) SCFT results. A measure of the distortion of the interface of

a micelle in the bcc phase from the ideal spherical shape is
where again we have normalized by the same measure forthe difference of the distances from the center of the micelle
spherical cell of equal volume. It can be shown that the fredo the interface along directions towards the closest face of
energy per chain in a micellar phase arranged in laktiée  the Voronoi cell, thg111) direction, and towards the corner
simply given byFy=Fy(A%7)Y3, whereF, is the free energy of the Voronoi cell, thg210) direction,
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FIG. 6. (Color online A view of the Voronoi cell of the bcc f
lattice, a truncated octahedron, with half of one hexagonal face and FIG. 7. Plot of the measured distortianas defined in Eqg28)
a quarter of one square face removed to reveal the inside. The edggﬁd (25) .measured from SCFT results for the bcc phase of
are drawn as black lines, the outside is shown as blue, and thr?ranched copolymers melts for generatiors @< 6. For compari-

inside is shown as yellow. The vectors connecting the center of the |\ o Jashed line shows the same distortion for lidadiblock
cell to the corners along th@10 directions and the nearest walls copolymer melts

along the(111) directions are shown.

8, and following the analysis of Matsen and Baf2§] the
5= R210 ~ Ra1y interfaces are shaded according to the local mean curvature.
= , (28 ; o~ i
R210 + Ry As the polyhedral distortion increases, the deviation from
_ ) constant mean curvature grows. The surface tengianso-
where Rz19 and Rqy are the radial distances to tB  cjated with an interface between unlike polymer melt do-
interface along those directiorisee Fig. 6. For a spherical mains scales ag'? [30]. A patch of areadA of a curved
interface we haveds,,=0 and for an interface which as the interface experiences a force due to the surface tension
truncated-octahedron shape of the bcc Voronoi céll.  which is given by 21ydA [31]. Since these micelle configu-
=(v5-y3)/(v5+y3)=0.127. By normalizing measured val- rations are saddle points of the free energy, we know that the
ues of § by 8,., we can assess the polyhedral distortion onforce due to the tension pulling inward on the interface is
the scale set by the shape of the bcc Voronoi cell. Thereforéhalanced by a net force pulling outward on the micelle inter-

we use face; that is, the interface must be in mechanical equilibrium.
P In copolymer micelles the compensating forces are due to a

a=— (290  difference in the tension of the chains in the core and coronal

Soce domains. Therefore, variation of the mean curvature of the

to quantify the polyhedral distortion of the interface as a!nten‘ace prpvides a direct_measure. of the chain tension pull-
function of molecular architecture. Figure 7 plots the shapdnd on the interface. Regions of high interfacial curvature,
parametera measured from SFCT calculations for the bectowards the edges and vertices of the beec Voronoi polyhe-
phase as function df and branching generatian It is clear ~ dron, correspond to regions where the coroBatlomains
that the packing frustration introduced by the ponhedraIPU“ relatlvely_ strongly on 'ghe interface. Conversely, rela-
Voronoi cell increases as the volume fraction of the core ofively flat regions on the\B interface, towards the nearest-
the micelle grows. Although the close-packing limit of hard n€ighbor faces of the polyhedron, indicate that the chain
spheres in a bce lattice is at a volume fraction\@=/8  Stretching is relatively low.
=0.680 24, the cores of the micelles are highly deformed for
f.weII beloyv this. Since the ou_ter chain stretching is respon- V. CONCLUSION
sible for this polyhedral distortion, the tendency to adopt the
truncated-octahedral shape of the bcc lattice is enhanced as From our analysis we see that for elastically asymmetric
the stiffness of the coronal region is increased by moleculacopolymers the polyhedral shape of the lattice Voronoi cell
branching. forces the micelle configuration to deviate drastically from
To further visualize this distortion we compute the meanthe limit of uniform interfacial curvature. While we have
curvatureH of AB interfaces extracted from SCFT results for argued that in the limit of perfectly polyhedral interfaces the
melts atyN=40 at the phases boundary between sphericah15 phase is most stable among the sphere phases and that
and cylindrical phases, th&15-Hex boundary, fog=6, g  very elastically asymmetric micelles approach this polyhe-
=2, and for linear diblocks. The distortion in these interfacesdral limit in regions where sphere phases are thermodynami-
corresponds to measured valuesaf0.32, «=0.128, and cally stable, it has yet to be shown that for small distortions
«a=0.011, respectively. These surfaces are displayed in Figfor «=<0.35 the minimal Voronoi cell area argument should
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FIG. 8. (Color online The AB interfaces extracted from the SCFT calculatitime surfaces at whickha(r)=0.5] for the bcc phase along
the thermodynamic phase boundary separating spherical and cylindrical morpholayifes: linear diblocks atf=0.166, (b) for g=2
branched copolymers &&0.275, andc) for g=6 branched copolymers &:0.350. The interfacial distortion at these points corresponds to
measured values @f=0.011, 0.124, and 0.321, respectively. The surfaces are shaded according to the local mean eyrvsgaseired in
units of the average mean curvatufid). The variation of the mean curvature provides a direct measure of the variation of the polymer chain
tension at the interface, due to the polyhedral environment of the lattice Voronoi cell. The standard deviation of the cutydtureach
surface is given in units ofH).

apply. For example, the reduced area of ¢35, bcc inter-  symmetry of our copolymer phase. We expand all of the
face of Fig. 8 is 1.0094, to be compared to the reduced are@ecessary functions of position in this basis, so thab

of the truncated-octahedron of the bcc Voronoi cell, 1.0990=3,q;f;(r). For example, the bcc phase of spheres can be
In this senseAB interfaces of physical micelles seem to be yegcribed by the set of functions witm3m symmetry. The
distorted less than about 10% towards their Voronoi polyhes,nctions are normalized such that

dra. Nevertheless, we argue that the polyhedral interface

limit of the micelle configurations sets the scale of the frus- _1

tration. While the true micelle interfaces are some interpola- \ fdrfi(r)fj(r) = G- (A1)

tion between a spherical and polyhedral shape, the scale of

the frustrated free energy is set by the polyhedral interfacé addition, we demand that these functions be eigenfunc-
upper bound. As mentioned above, in the limit of polyhedraltions of the Laplacian operator so that

interfaces asyN—o, SST predicts thaF..=1.0014 45, N

andF;..=1.006F 5,5, We can compare this prediction to the Vafi(r)=- —'2fi(r), (A2)
results of our SCFT calculations along the H&¥5 phase D

boundary atyN=40 for g=5 branched copolymer&@t f \yhereD is the length scale of the periodicity of the system.
=0.340 for which we find F5=6.2981kT, Fuocc  The set of functions is ordered in an increasing sequence in
=6.31A4kgT, and F=6.3261ksT, corresponding to 0.28% ). and), is set to Ofor f,(r)=1]. Because the product of
and 0.46% higher fre_e energy than #ES phase for beec and 5 pasis functiond;(r)f;(r) has all the symmetries of the
fcc phases, respectively. On the scale of these small freﬁasis, it belongs in the same space of functions as our basis.

energy differences, the analysis qf our geometr'ical limit iS. hus, we can write the product as an expansion in our basis
necessary component of any rational explanation for Iattlc?

. . . nctions. We define the coefficients, of the expansion so
choice. Therefore, while such a calculation has yet to bquat I I 1C1eNi xpanst
carried out, we expect that a more detailed SST analysis 0
the relaxed configurations of micelle interfaces will bear this fi(r)fj(r) = > Tycfi(r). (A3)
argument out. "
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o 2 A, fors<s<s,
APPENDIX: SPECTRAL SCFT - = N (Ad)
s EJ. Bjq/, fors; <s<s,,
Following Matsen and Schickl5,16 we define a set of
orthogonal basis function$(r), which have the periodic where we have defined the matriods andB;;,
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Na?\; where.A; and3; are the eigenvalues &; andB;;, and[O,];
Aj=- 6D?2 i ~ % WLk (A5) and[OgJ;; are the orthogonal matrices which diagonalge

andB;;, respectively. The matrix

By = - sz)\iz 8 = > We iy (A6) Thij(s' =) = 2 [Oalic exp{~ A(s' — 9)}[Opljc (A7)
6k°D Kk k

Since these are symmetric, real matrices we can diagonalizgansfers theA-block solution to Eq(A4) from sto s’, and

A; and Bj; by orthogonal transformations, such that the matrixT;ij(s’—s) does the same for th&-block solution.

EKJ[OL]ikAk,[OA]” =Aj8; and Eky,[Og]ikBM[OB],j:Biéij, Using these matrices we can write the solutionscfds),

R 2 This=sDA[(s), forsy<s<s,,
g (s) = . ) (A8)
2 Thij(s=S)Af(s), fors,;<s<s, (a#1),

whereAiT(sa) are the boundary conditions fqﬁ(s) ats,; In order to findq;‘(s) for the (g—1)th generation, we first
computeq;(s;;) by Eq. (A8) and AiT(s?):a,l. Using Eq.
te )=yl tir <V17as1f. (A11) we can then iteratively compuuém( _,) for allmup
Ai(sa) =V fdr[q (8 J"e2fi(r). (A9) to 74-1. Then we will haveAiT(sg_l) and g;(s) for sy_,<s
: <841 We can repeat this procedure until we hau[és)
Thus, we have thah/(sy) = d. down to the first generation. At this point we have computed
In order to compute\[(s,) for the lower generations, we the probability of a chain diffusing from its branched,
define the function B-block tips down to the end of th& block. That is to say,
weJr have computed the single-chain partition funct@hnv
(Mg ) = t =0y(sp)-
Ui (s,) = V_lJ dr[q(r,s)I™fi(r). (A10) To find g;(s) we have to solve the same matrix equation as

Eq. (A4) except with a plus sign on the left-hand side. Again,
Given this definition we havg&i(l)(sa):qi*(s;) and, of course, the transfer matrix for the “reversed-motioA*block solu-

Af(s,)=¢{"(s,). Using Eq.(A3) and the fact that the Fou- tion is defined by

i i U N =>al(sHFf i ' !
:lhe;t expansion ofg'(r,s;)=Xq; (s;)fi(r), it can be shown Ta(s' -9 = % [Oplik €XPLAS’ — 9)HOpliks
. (A12)
U™ (50 = 2 Tipd (S U™ V(8. (AL1) o , ,
ik andTg;(s' —s) is defined similarly. The solution fay(s) is
|
EjTA,ij(S_Sl)Aj(Sl)y for sy <s<s,
ai(s) = (A13)
E] TB,ij(S_ Sa)Aj(Sa)a for Sp-1<S<S, (a # 1),
[
where A(s,) are the branching point boundary conditions, Ai(Sy)) = > Fijkql'(s__l)l//(k"‘“_l)(sa—l)- (A15)
j.k
Ai(S,_q) :\rlf drq(r,S;_l)[qT(r,S;_l)]”a‘lfi(r)_ We use the fact thad(sy) = &1, the boundary condition for
the s, free end, to computg;(s) from Eq. (A13) for the first
(A14) generation. We can then use E415) along withg;(s;) and
zﬁi(’“_l)(sl) to find g;(s) for the second generation. Repeating
Similar to the identity(A11), it can be shown that this process we can find;(s,) andg;(s) for all generations.
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Using bothg;(s) andg/(s) we can use Eqg24) and (25) Wa i —Wg; = xN(dg; — dai), (A19)
to compute the Fourier amplitudes of the monomer concen-
trations ¢, ; and g},

1 51
= ds>, i(s)ql (9T ik, Al6
A qI(s[,)L %ql( AT (A10) 1= dai+ dai- (A20)
1 3 S
b= T NB,CJ ds> qj(s)a(s) - (A17) .
01(So) a=2 St Ik Clearly, we haveg,,=f and ¢g,=(1-f), by definition.

Finally, the single-chain partition functio@ and the Fou- Moreover, we c.an.sezs./A,l:XN(l—f) andwe,,=xNf. Since
fier densities are used to compute the mean-field free enerdfl® monomer distributiong,; and ¢g; depend functionally

per chain(up to an additive constant on the fieldsw,; andwg; through Q[w,;,wg;l, Egs.(A19)
E and (A20) present a complicated set of nonlinear equations.

—— =—Inql(sy) - YN daicds,:- (A18)  These are most easily solved by computifig and ¢g; for

nkgT WS X i ni e some initial guess ofva; andwg;. Thenw,; andwg; can be

adjusted towards a solution of Eq#\19) and (A20). The
computation then proceeds iteratively until the self-
consistent solution is found.

Now we need only to find the Fourier components of the
field configurationw,; andwg;, so that we satisfy the self-
consistency relations
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