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We present a numerical algorithm to evaluate the self-consistent field theory for melts composed of block
copolymers with multiply branched architecture. We present results for the case of branched copolymers with
doubly functional groups for multiple-branching generations. We discuss the stability of the cubic phase of
spherical micelles, theA15 phase, as a consequence of the tendency of theAB interfaces to conform to the
polyhedral environment of the Voronoi cell of the micelle lattice.

DOI: 10.1103/PhysRevE.71.051801 PACS numberssd: 82.35.Jk, 64.70.Md, 81.16.Dn

I. INTRODUCTION

Block copolymers provide an ideal route to engineering
well-controlled structure on nanometer length scalesf1,2g.
Through control over the chemical architecture, these sys-
tems can be tuned to self- assemble into periodic structures
of an astounding variety. A plethora of new phases and struc-
tures have been identified in dilute diblock systemsf3,4g,
triblock systemsf5g, and confined diblocksf6g. One might
think that there is hardly more to say about the melts of the
simplest of block copolymer architectures, the neat linearAB
diblock copolymer. It is well known that these linear diblock
copolymers display a host of ordered phases: spheres, cylin-
ders, lamella, and the bicontinuous gyroidf7g. However, we
have arguedf8,9g that the tendency to minimize theAB in-

terfacial area should stabilize a new cubic phase withPm3̄n
symmetry, theA15 lattice. The subsequent synthesis and
characterization of PEO-docosyl dendrimeric diblocks cor-
roborated our predictionf10g and was in agreement with the
self-consistent field theorysSCFTd phase diagram for mik-
toarm star copolymersf8g. In this article, we provide the
details of SCFT for branched architectures and, to our
knowledge, the first SCFT phase diagrams for true, multiply
branched dendritic diblock copolymers.

The serial development of new chemical synthesis routes
is typically a costly and slow means for exploring the con-
sequences of novel copolymer architectures. It is therefore
desirable to develop theoretical tools for the efficient com-
putation of the phase behavior which can systematically map
out novel phase properties for a broad class copolymer archi-
tectures. Olmsted and Milner developed a strong-segregation
theory sSSTd approach to the phase behavior ofAnBm mik-
toarm star copolymer melts, applicable in thexN→` limit,
wherex is the Flory-Huggins immiscibility parameter andN
is the total number of chemical segments in the copolymer
f11,12g. For asymmetric copolymers—say, forn.m—the
effective spring constant of the more abundant polymer
block isn2/m2 times more stiff than other block. Such asym-
metry leads an enhanced stability of phases with a strong
interfacial curvature, and thus, spherical and cylindrical mi-
celles are predicted to dominate the phase behavior for large
molecular asymmetryf11g. Fredrickson and Frischknecht in-
troduced an approximate SST approach to multiply branched
dendritic copolymersf13g, and Pickett developed a more re-

fined self-consistent brush analysis for dendritic copolymer
meltsf14g. Both works showed a similar increase in stability
of high-interface-curvature phases. Despite the analytic
transparency of these SST calculations, the results of these
calculations are predicated on many assumptions about the
detailed structure of the micellar aggregates. In particular,
certain assumptions must be made concerning the interfacial
shape and direction in which copolymer chains stretch in the
aggregatesf8,12g. Because the free energy differences be-
tween phases are small, the presence of these undetermined
degrees of freedom makes the task of locating the true free
energy ground state analytically cumbersome, if not impos-
sible.

In Sec. II we present the theoretical derivation of the
SCFT for multiply branched copolymer melts from the full
classical partition function of this system. We present an al-
gorithm for the SCFT of block copolymers within a specific
class of multiply branched architecturesssee Fig. 1d. Like the
SCFT approaches of Matsen and Schick for linearAB
diblock copolymersf15g and forsABdn starblock copolymers
f16g, this approach makes no approximation beyond the ap-
proximation of the mean field in the monomer concentration
profile. Therefore, this SCFT fully captures the copolymer
chain fluctuations in the presence of the average concentra-
tion profile of constituent monomers. Moreover, this ap-
proach efficiently minimizes over all possible copolymer
configurations, precluding the variational assumptions often
necessary in the SST calculations. Finally, a numerical
implementation of SCFT is not limited to the infinite-xN
parameter range. Given an arbitrary amount of computing
time the equilibrium phase can be determined for any finite
value of xN. Practically, SCFT provides an efficient means
of computing the mean-field free energy of most phases for
xN&100 f17g. In Sec. III we present the results of an appli-
cation of SCFT to a series of branched copolymer melts
within a specific class of this structural motif: specifically,
copolymers which branch doubly with each successive gen-
eration. We discuss these results in the context of elastically
asymmetric copolymer melts and the geometry of theAB
interface. We conclude in Sec. IV.

II. SELF-CONSISTENT FIELD THEORY FOR BRANCHED
ARCHITECTURES

Our approach to multiply branched diblocks is an exten-
sion of the SCFT approach to linear diblocks and starblock

PHYSICAL REVIEW E 71, 051801s2005d

1539-3755/2005/71s5d/051801s11d/$23.00 ©2005 The American Physical Society051801-1



copolymers pioneered by Matsen and Schickf15,16g. While
the derivation of the mean-field free energy for the mulitply
branched system follows directly from the results for the
linear and starblock architectures, we present its full deriva-
tion here since subsequent evaluation of that free energy re-
quires a slightly more generalized approach. Nevertheless,
where possible, we attempt to keep the notation consistent
with theirs.

We consider a system of total volumeV, containingn
branched copolymers. These copolymers are each composed
of N total segments. Without loss of generality, we define the
segment volume for both monomer types to ber0

−1, so that
the total volume of the system isV=nN/r0. The statistical
segment lengths for theA- andB-type monomers are denoted
by aA andaB. The volume fraction ofA-type monomer in the
system is denoted byf. Thus, each chain is composed offN
A-type segments ands1− fdN B-type segments. The architec-
ture of our molecule is shown in Fig. 1. The first generation
is a singleA block. Grafted onto this aresg−1d generations
of equal-lengthB blocks. The branching of theath genera-
tion is given byha so that the total number ofB blocks,NB,
is given by

NB = h2s1 + h3s1 + h4s. . .s1 + hg−1s1 + hgdd . . . ddd. s1d

We define a coordinate along the polymer,s, so that within
any chain portion of lengthDs there aresDsdN segments.
Thus, in these coordinates, the length of theA block is given
by DsA= f and that of theB sections is given byDsB=s1
− fd /NB.

A particular melt configuration is specified byn branched
curves in space,r bssd, the course-grained position of the

ssNdth segment of thebth chain. At this point, we do not
introduce an explicit parametrization of the full branched
configuration. It suffices to demand that the first-generation
curve be joined toh2 second-generation curves which are
each joined toh3 third curves, etc. Given this set of branched
curves, we define the dimensionless segment density opera-
tors

f̂Asr d ;
N

r0
o
b=1

n E
0

1

dsgssdd„r − r bssd…, s2d

f̂Bsr d ;
N

r0
o
b=1

n E
0

1

dsf1 − gssdgd„r − r bssd…, s3d

wheregssd is a function which is equal to 1 whens lies along
an A portion of the chain and 0 whens is along aB portion
of the chain, and the integration range is over the entire
branched curve. In a neat system, the allowed melt configu-
rations are incompressible, and thus we are constrained to
consider configurations for which

f̂Asr d + f̂Bsr d = 1. s4d

The full partition function for the melt is the functional
integral overn branched curves:

Z =
1

n!
E p

b=1

n

fdr bgdf1 − f̂Asr d − f̂Bsr dg

3expH−
3

2Na2E
0

1

dshgssd + k2f1 − gssdgjuṙ bssdu2

− xr0E dr f̂Asr df̂Bsr dJ , s5d

where a normalization factor is absorbed into the functional
measure,fdr bg, ṙ ssd=dr ssd /ds, k;aA/aB measures the rela-
tive length of theA andB segments, anda;aA. The Flory-
Huggins parameterx characterizes the repulsive interaction
between unlike monomers.

We can use the identityefdFA,BgdfFA,Bsr d−f̂A,Bsr dg=1
to transform Eq.s5d into a functional integral over the mono-
mer distributions. Introducing fields conjugate to the total
and individual segment concentrations, we have explicit rep-
resentations of the delta functionals,

df1 − f̂Asr d − f̂Bsr dg =E fdJgexpHr0

N
E drJsr d

3f1 − f̂Asr d − f̂Bsr dgJ s6d

and

dfFA,Bsr d − f̂A,Bsr dg =E fdWA,BgexpHr0

N
E drWA,Bsr d

3fFA,Bsr d − f̂A,Bsr dgJ , s7d

where the limits of integration of the conjugate fields are

FIG. 1. sColor onlined. A schematic of the branched molecular
architecture. The first-generationA block containsfN segments.
Each higher-generationB block is composed ofs1− fdN/NB seg-
ments. Here, the branching of each generation is 2. In the mean-
field approximation, it is necessary to define only a single coordi-
natesa for the set of branching points of theath generation.
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±i`. Inserting these representations and the above identity
into Eq. s5d and integrating over the delta functions in Eqs.
s2d and s3d, the full partition function is given by

Z =
1

n!
E fdJgfdWAgfdWBgfdFAgfdFBg

3 hQfWAsr d,WBsr dgjn expH−
n

V
E dr hxNFAsr dFBsr d

− WAsr dFAsr d − WBsr dFBsr d − Jsr d

3f1 − FAsr d − FBsr dgjJ , s8d

whereQfWAsr d ,WBsr dg is the partition function for a single
noninteracting, branched chain subject to the spatial field
WAsr d acting on first generation of the chain andWBsr d act-
ing on the higher generations:

QfWAsr d,WBsr dg =E p
b=1

n

fdr bgexpH−E
0

1

ds

3FgssdS 3

2Na2uṙ bssdu2

+ WA„r bssd…D + f1 − gssdg

3S 3k2

2Na2uṙ bssdu2 + WB„r bssd…DGJ .

s9d

In general, it is not possible to evaluate the functional inte-
grals in Eq.s8d. Nevertheless, in the limit whereN is large,
fluctuation contributions to the partition function are small,
and the integral is dominated by its saddle point, where the
free energy per chain, −skBT/ndln Z, is minimalf18,19g. The
saddle-point approximation, of course, yields the mean-field
results.

To obtain the mean-field result, we solve for the field
configurations ffAsr d ,fBsr d ,wAsr d ,wBsr d ,jsr dg, which
minimize the free energysthat is, thelowercasefunctions are
the extremal values of theuppercasefunctionsd. Minimizing
with respect toFAsr d, FBsr d, andJsr d, respectively, we ob-
tain the mean-field equations

wAsr d = xNfBsr d + jsr d, s10d

wBsr d = xNfAsr d + jsr d, s11d

1 = fAsr d + fBsr d. s12d

Minimizing with respect toWAsr d and WBsr d, respectively,
we find expressions for the mean-field densities,

fA,Bsr d = −
nN

r0Q
dQ

dwA,Bsr d
, s13d

where we have definedQ;QfwAsr d ,wBsr dg.
Upon inspection, it is clear how these relations constitute

the mean-field theory result of the full problem. We have

replaced the problem of multiply branched chains mutually
interacting, with the problem of noninteracting chains sub-
ject to the fieldswAsr d andwBsr d. These fields are chosen to
represent the mean-field interactions produced by the mono-
mer distributionsfAsr d and fBsr d, That is, from Eqs.s10d
ands11d it is clear thatA-typesB-typed monomers experience
a repulsion proportional toxN times the local density of
B-type sA-typed monomers and a repulsion due to the overall
incompressibility of the system, given byjsr d. Because the
mean-field incompressibility constraints12d depends only on
the total monomer density,jsr d contributes equally to both
potentialswAsr d andwBsr d. Hence, we see thatjsr d is simply
the Lagrange-multiplier field which allows us to fix the com-
bined, local segment concentration tor0. Moreover, the av-
erage segment distributionss13d are simply the average dis-
tributions produced by noninteracting chains subject to the
fields wAsr d andwBsr d. Thus, Eqs.s10d–s13d provide a fully
self-consistent set of equations, which can be solved to yield
the mean-field result. Once thewAsr d and wBsr d are found,
we can compute the mean-field free energy per chain,

F

nkBT
= − ln Q − V−1E dr fwAsr dfAsr d + wBsr dfBsr dg

+ V−1E drxNfAsr dfBsr d. s14d

The first line of Eq.s14d gives the entropy per branched
chain, and the second line gives the enthalpic, or interaction,
contribution to the free energy.

For a given set of monomer potentialswAsr d andwBsr d, Q
can be evaluated. We start by defining the Green’s function,
or propagator, for a continuous, unbranched portion of the
chain,

Gsr i,si ;r f,sfd ; E
r i

r f

fdr bgexpH−E
si

sf

dsF 3

2Na2uṙ bssdu2

+ wA„r bssd…Ggssd + F 3k2

2Na2uṙ bssdu2

+ wB„r bssd…Gf1 − gssdgJ , s15d

where this path integral is carried out over all pathsr bssd,
such thatr bssid=r i andr bssfd=r f. We absorb a normalization
into fdr bg so that the integral of the propagator over the
coordinatesr i andr f is independent of arc length,sf −si. This
is the same as demanding that the probability of any portion
of this chain havingany configurationsin the absence of
external potentialsd be independent of the number of seg-
ments it contains. Note thatGsr i ,si ; r f ,sfd is identical to the
imaginary-time quantum mechanical amplitudeswith s→
−itd for a particle of massNa2/3 for Na2/3k2 when gssd
=0g in the potential −wAsr d for −wBsr d whengssd=0g mov-
ing from r i at the initial “time” si to r i at a later “time”sf.
Therefore, we know thatGsr i ,si ; r f ,sfd obeys the imaginary-
time Schrödinger equation, or diffusion equation, and, unlike
its interpretation in quantum mechanics, represents a prob-
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ability and not an amplitude. We make explicit use of this
fact below.

To capture the branched architecture of the chain we de-
fine the end-distribution functions. These functions compute
the statistical weight of a chain diffusing along its trajectory
to some position in space. That is, we define a function
q†sr ,sd, which is proportional to the probability that the
branched chain diffused from one of its free ends atsg, where
sa is the length coordinate corresponding to the branching
point of ath generationssee Fig. 1d. Note that forsg−1,s
,sg this function is simply the probability that an un-
branched chain diffused from its free end tos at some posi-
tion r . But if sg−1,s,sg−2, thenq†sr ,sd is proportional to
the probability thathg free ends diffused fromsg to some
intermediate position—say,r g−1—at sg−1 and then diffused
on tor at s ssee Fig. 2d. Thus, ass decreases towards the free
end of theA block ats0, q†sr ,sd assumes the probability of
all higher generations diffusing “into” this lower-generation
branch. We will refer to this diffusion fromsg towardss0 as
“backward motion.” Note that in terms of the probability
distributions all paths diffusing from any of thehg free ends
are equivalent, and therefore,q†sr ,sd is well defined.

We summarize the above definition by writingq†sr ;sd in
terms of our unbranched propagator,Gsr i ,si ; r f ,sfd:

q†sr ,sd =E dr aGsr ,s;r a,sadfq†sr a,sa
+dgha+1,

for sa−1 , s, sa, s16d

whereq†sr a ,sa
+d indicates that we take the value of this func-

tion from the end of the higher generation atsa sjust before
the branch pointd. If we normalize our propagator so that

limsf→si
Gsr i ,si ; r f ,sfd=dsr f −r id, then we establish a set of

boundary conditions forq†sr ,sd at its free end atsg and each
branching point,

q†sr ,sg
−d = 1, s17d

q†sr ,sa
−d = fq†sr a,sa

+dgha+1, s18d

whereq†sr ,sa
−d is the limit of the function ass approachessa

from belowsjust after the branching pointd. Thus, at a given
branching pointsa the value ofq†sr ,sd changes discontinu-
ously, fromq†sr ,sa

+d to q†sr ,sa
−d, since the function assumes

the probability of the other higher-generation branches meet-
ing it at that point.

Becauseq†sr ,sd is defined in terms of the propagator
Gsr i ,si ; r f ,sfd, we know that it will obey the same diffusion
equation as the propagator. Namely,

−
]q†

]s
=5

Na2

6
¹2q† − wAsr dq†, for s0 , s, s1,

Na2

6k2 ¹2q† − wBsr dq†, for s1 , s, sg.6
s19d

It should be understood that we will solve these first-order
equations for the unbranched portions of the chain and use of
the branching points to determine boundary conditions;
hence, we do not need to worry about differentiating at
branching points.

Because Eq.s19d is a linear equation forq† which is first
order in s, given any set of fieldswAsr d and wBsr d, we can
solve forq†sr ,sd for all segments. First, using Eqs.s19d and
s17d we solve for theq†sr ,sd for thegth generation. Then, we
can use Eqs.s19d ands18d and our solution forq†sr ,sg−1d to
solve for thesg−1dth generation ofq†sr ,sd. Likewise, we
can then iteratively solve for all lower generations until we
get to the first.

Once the value ofq†sr ,sd is known for alls down tos0,
we can compute the single-chain partition by integrating this
backward-motion end-distribution function over the position
of the free end of theA block,

Q =E drq†sr ,s0d. s20d

However, in order to compute the mean-field melt free en-
ergy we need to calculate the average monomer distributions
fAsr d and fBsr d created by the monomer potentialswAsr d
andwBsr d. By introducing another end-distribution function
qsr ,sd, we can compute the functional derivative of −lnQ
with respect to these fields directly.

We defineqsr ,sd to be proportional to the probability that
a chain configuration diffuses in the “forward” direction
from its other free endsthe free end of theA block at s0d
along one of the branched trajectories of the molecule tos at
the positionr ssee Fig. 2d. At the branching points,sa, qsr ,sd
assumes the probability thatsha+1−1d branches have also
diffused from their free ends atsg to r a at sa. This is to say
thatqsr a ,sa

+d contains not only the probability that thes0 end

FIG. 2. sColor onlined. A schematic representation of the prob-
ability captured by the end-distribution functionsq†sr ,sd andqsr ,sd
for a four-generation molecule. For the point,s, q†sr ,sd is propor-
tional to the probability that the dashed portion of the chain has
diffused to the positionr . For the same point,qsr ,sd is proportional
to the probability that the dotted portion of the chain has diffused to
the same position. The probability that the point is atr at s is the
product ofq andq†.
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diffused to this point but also the probability that all of the
other branches, not including the currently diffusing path,
have diffused tor a at sa

+ to meet it. This property makes
qsr ,sd convenient for computing the average monomer dis-
tributions. Using the above definition we have

qsr ,sd =E dr aGsr a,sa;r ,sdqsr a,sa
−dfq†sr a,sa

+dgha−1,

for sa , s, sa+1. s21d

The corresponding boundary conditions forqsr ,sd are given
by

qsr ,s0
+d = 1, s22d

qsr ,sa
+d = qsr ,sa

−dfq†sr a,sa
+dgha−1. s23d

Since the “motion” of the diffusion along the chain is re-
versed from that ofq†sr ,sd, the diffusion equation forqsr ,sd
is the same as Eq.s19d except with a plus sign appearing on
the left-hand side. In analogy withq†sr ,sd, we must first
solve the diffusion and Eq.s22d for the first generation of
qsr ,sd. We then use our second-generation solution of
q†sr ,sd and the first-generation solution ofqsr ,sd in Eq. s23d
to find the solution for the second generation. We can repeat
the process to solve forqsr ,sd over the entire length froms0

to sg.
It is not difficult to show that the monomer distributions,

given by Eq.s13d, can be computed by

fAsr d =
V

QEs0

s1

dsqsr ,sdq†sr ,sd, s24d

fBsr d =
V

Q o
a=2

g

NB,aE
sa−1

sa

dsqsr ,sdq†sr ,sd, s25d

whereV=nN/r0 andNB,a is the number ofB blocks in the
ath generation, which is simply given byhaha−1¯h2. Thus,
the mean-field free energys14d can be computed entirely
with the end-distribution functionsqsr ,sd andq†sr ,sd.

While real-space methods for numerically solving these
diffusion equations existf19,20g, these methods tend to be
computationally intensive for melt phases with spatial varia-
tion in three dimensions. Instead, we use Fourier expansions
of the functions to solve forq†sr ,sd and qsr ,sd given an
arbitrary set of external fieldswAsr d and wBsr d. Since we
know that equilibrium structures are themselves infinitely pe-
riodic structures, we expect that we can very accurately de-
scribe mean-field results with a finite number of Fourier
terms included in the expansion. For up to moderately large
degrees of segregationsfor xN&50d the spectral methods of
f15,16g allow for a rapid and very accurate exploration of
mean-field thermodynamicsf19g. We present the spectral
form of our SCFT for multiply branched copolymer melts in
the Appendix.

III. DOUBLY FUNCTIONAL BRANCHING: THE ROLE
OF INTERFACES

Using the SCFT derived in the previous section we com-
puted thexNø40 mean-field phase behavior for multiply
branched copolymer melts where the branching, or function-
ality, of each generation is 2. We compute the phase behavior
for g=2, . . . ,6 for monomers of equal segment sizek=1. To
achieve a precision of ±10−3 in f and ±10−2 in xN we require
a precision in the free energy of better than ±10−4. This re-
quires the use of up to 908 basis functions for some phases.
The mean-field phase diagrams for 3øgø6 are shown in
Figs. 3 and 4. We have already reported on the phase behav-
ior for g=2, theAB2 miktoarm starf8g.

The thermodynamics of these melts are strongly influ-
enced by the introduction of the multiply branched architec-
ture. Compared to the predicted phase behavior of linearAB

FIG. 3. Phase diagrams forg=3 andg=4. Dis labels regions
where the melt is disordered. Stable regions of ordered phases are

labeled sLamd lamellar; sGyrd gyroid, Ia3̄d symmetry; sHexd
hexagonal-columnar,p6mm symmetry;sA15d sphere phase,Pm3̄n

symmetry;sbccd body-centered-cubic lattice of spheres,Im3̄m sym-

metry; andsfccd face-centered-cubic lattice of spheres,Fm3̄m sym-
metry f24g. The circle marks the mean-field critical point through
which the system can transition from the disordered state to the
Lam phase via a continuous, second-order phase transition. All
other phase transitions are first order.
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block copolymer melts, the phase boundaries of these
branched copolymer melts are skewed systematically to-
wards larger values off for most phasesf15g. This indicates
an enhanced preference for phases where the branched poly-
mer domain is on the convex side of curvedAB interfaces. In
Fig. 5 we plot the strong-segregationsxN=40d phase bound-
aries as a function of branching generation. The preference
for morphologies with the branched,B domain on the outside
of a highly curved interface increases with increasing gen-
eration. For example, spherical micelles where theA blocks
form the core region are stable up tof =0.275 forg=2 but
stable up tof =0.350 forg=6. This effect is well established
for copolymer architectures with elastically asymmetric
blocks f12,16,21,22g.

In general, elastic asymmetry stems chiefly from two
sources—asymmetric monomer sizes and asymmetric co-
polymer architecture. Milner demonstrated within SST that
the elastic asymmetry between copolymer blocks of anAnBm
miktoarm star is captured by the parametere=sn/md
3srBaB

2 /rAaA
2d1/2, whererA

−1 and rB
−1 are the respective vol-

umes of theA andB segmentsf11g. From this analysis it can
be shown that the effective spring constant of theB brush
domain is a factor ofe2 times the value of the symmetric
casesfor e=1d. For e.1, the molecular asymmetry leads to
the stabilization of morphologies where theB polymer block
composes the outer corona of spherical and cylindrical do-
mains for larger values ofA composition than is observed for
elastically symmetric copolymersf23g.

It is desirable to have a similar quantitative measure of the
elastic asymmetry for copolymers with this multiply
branched structural motif. However, in contrast to the mik-
toarm star architecture, the elastic enhancement of multiply
branched domains depends on the aggregate morphology.
Using the Alexander–de Gennes, strong-segregation analysis
employed by Frischknecht and Fredrickson we find, for ex-
ample, that the stiffness of a lamellarB domain in these

FIG. 4. Phase diagrams forg=5 andg=6. Labels appear as in
Fig. 3.

FIG. 5. The SCFT phase boundaries com-
puted at xN=40 for 2øgø6 are depicted as
open circles. For comparison thexN=40 phase
boundaries for linear diblocks are indicated of the
f axis. Note the absence of a stableA15 phase for
linear AB diblock copolymer melts.
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doubly functional copolymer melts is enhanced by a factor of
4s8g−1−1d / f7s2g−1−1dg over the linear, unbranched case
f13g. This corresponds to factors of 4, 12,292

7 .41.7, 156,
and 604 multiplying the stretching free energy of a lamellar
B domain for the g=2,3,4,5, and 6cases, respectively.
Pickett demonstrates, however, that the Alexander–de
Gennes approximation provides an overestimate of the
branched chain free energy whose error grows quickly with
the branching generationf14g. Based on the analysis of Pick-
ett f14g for a slightly different copolymer architecture we
might expect that by relaxing the constraint the chain ends
are held at the tips of the brush and the SST stretching free
energy of the branchedB domain can by relaxed from the
Alexander–de Gennes upper limit by factors of roughly 2.6,
5.5, 11.7, and 24.6 forg=3, 4, 5, and 6, respectivelysthe g
=2 case corresponds theAB2 miktoarm stard. This allows us
to estimate more realistic values of the elastic asymmetry in
the lamellar morphology: 4 forg=2, 4.6 forg=3, 7.7 forg
=4, 13.4 forg=5, and 24.6 forg=6. While these are some-
what crude estimates, they provide reasonable correspon-
dence between the SST phase behavior of these multiply
branched copolymers andABn copolymersf8g. For example,
the respectivexN=40, Gyr-Lam andA15-Hex transitions oc-
cur at f =0.546 andf =0.349 for a melt ofAB5 miktoarm
stars, corresponding to an elastic asymmetry of 25. This
should be compared to the same transitions which occur at
f =0.550 andf =0.350, respectively, for ag=6 branched co-
polymer, with an estimated elastic asymmetry of 24.6.

We note the stability of the cubicA15 phase in these
melts. We have arguedf9g that asxN→` and in the limit
that the AB interface of a sphere phase is constrained to
adopt the same shape as the lattice unit cell that theA15
should be the equilibrium structure. In this limit the relative
stability of competing arrangements of micelles can be as-
sessed purely in terms of two geometric moments of the
Voronoi polyhedra of the lattice: the area and second mo-

ment of the lattice. IfRXsV̂d measures the radial distance
from the center to the surface of the Voronoi cell of latticeX

at solid angleV̂, then we can compute the area in terms of
the area of a spherical cell of equal volume,

AX =
1

s4pd1/3

E dV̂hRX
2sV̂d + f¹V̂RXsV̂dg2j

FE dV̂RX
3sV̂dG2/3 , s26d

where ¹V̂= û] /]u+f̂] /]f. We can also define the second
moment, or “stretching” moment, of the Voronoi cell,

IX = s4pd2/3
E dV̂RX

5sV̂d

FE dV̂RX
3sV̂dG5/3, s27d

where again we have normalized by the same measure for a
spherical cell of equal volume. It can be shown that the free
energy per chain in a micellar phase arranged in latticeX is
simply given byFX=F0sA2Id1/3, whereF0 is the free energy

per chain for the case when the Voronoi cell is approximated
as a spheref9,12g. Given these geometric measures for all
candidate arrangements of spherical micelles we can assess
the relative stability of these phases in this limit where the
AB interface has the same shape as the unit cell of the lattice.
It was discovered by Weaire and Phelan that the space par-
tition of the A15 lattice has the lowest area of all known
equal-volume periodic partitions of three-dimensional space
f25g. It is for this reason, despite the fact that the bcc lattice
has a smaller second moment, that theA15 lattice is most
stable among the lattice arrangements of spherical micelles
when AB interfaces have adopted the shape of the Voronoi
cell in which they are confined. In particular, this limit pre-
dicts that the free energy per chain for theA15 phase is
0.14% and 0.61% lower than the bcc and fcc phases, respec-
tively. Of course, there are finitexN corrections to this
asymptotic limit due to chain fluctuations which are ne-
glected in the strong-segregation limit, but the lowest-order
corrections which distinguish between morphologies are
smaller than the leading-order free energy term by a factor of
sxNd−4/9 f26,27g.

The conclusions of our SST analysis are valid in the limit
that theAB interface has adopted the polyhedral shape of the
lattice Voronoi cell. It is well known that constraining a mi-
celle to occupy a polyhedral unit cell frustrates the internal
configuration of the aggregatef28,29g. Chains which extend
along directions towards corners of the Voronoi cell must
stretch farther than those extending towards the walls. The
difference in tension in these chains leads to a tendency to
distort the AB interface from its ideal, uniformly curved
shape into the polyhedral shape of the Voronoi cell. Of
course, the micelle will adopt some compromise between the
uniform curvature and relaxed outer chain stretching which
will be determined by the relative importance of outer chain
stretching and the forces which pull inward on theAB inter-
face: namely, the surface tension and inner chain stretching.
We demonstratedf8g how the tendency for cylindrical mi-
celles in the Hex phase to adopt a hexagonal interface shape
is enhanced both by an increase in the inner domain volume
fraction f and the elastic asymmetry between the coronal and
core polymer domains,e. In particular, we found that al-
though AB interfaces in micelles for symmetric molecules
se.g., linearAB diblocksd remain relatively unperturbed by
the lattice symmetry, cylindrical micelles composed of very
elastically asymmetric copolymersse*3d have interfaces
which are very nearly hexagonal in regions where the Hex
phase is thermodynamically stable. Given the stability of the
A15 phase in the present systemsFig. 5d, it must be that the
interfaces of the sphere phases are also substantially distorted
by the polyhedral environment of the lattice Voronoi cell.

We can quantify the extent to whichAB interfaces in
sphere phases adopt the shape of the Voronoi cells from our
SCFT results. A measure of the distortion of the interface of
a micelle in the bcc phase from the ideal spherical shape is
the difference of the distances from the center of the micelle
to the interface along directions towards the closest face of
the Voronoi cell, thes111d direction, and towards the corner
of the Voronoi cell, thes210d direction,
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d ;
Rs210d − Rs111d

Rs210d + Rs111d
, s28d

where Rs210d and Rs111d are the radial distances to theAB
interface along those directionsssee Fig. 6d. For a spherical
interface we havedsph=0 and for an interface which as the
truncated-octahedron shape of the bcc Voronoi cell,dbcc
=sÎ5−Î3d / sÎ5+Î3d.0.127. By normalizing measured val-
ues ofd by dbcc, we can assess the polyhedral distortion on
the scale set by the shape of the bcc Voronoi cell. Therefore,
we use

a ;
d

dbcc
s29d

to quantify the polyhedral distortion of the interface as a
function of molecular architecture. Figure 7 plots the shape
parametera measured from SFCT calculations for the bcc
phase as function off and branching generationg. It is clear
that the packing frustration introduced by the polyhedral
Voronoi cell increases as the volume fraction of the core of
the micelle grows. Although the close-packing limit of hard
spheres in a bcc lattice is at a volume fraction ofÎ3p /8
.0.680 24, the cores of the micelles are highly deformed for
f well below this. Since the outer chain stretching is respon-
sible for this polyhedral distortion, the tendency to adopt the
truncated-octahedral shape of the bcc lattice is enhanced as
the stiffness of the coronal region is increased by molecular
branching.

To further visualize this distortion we compute the mean
curvatureH of AB interfaces extracted from SCFT results for
melts atxN=40 at the phases boundary between spherical
and cylindrical phases, theA15-Hex boundary, forg=6, g
=2, and for linear diblocks. The distortion in these interfaces
corresponds to measured values ofa=0.32, a=0.128, and
a=0.011, respectively. These surfaces are displayed in Fig.

8, and following the analysis of Matsen and Batesf29g the
interfaces are shaded according to the local mean curvature.
As the polyhedral distortion increases, the deviation from
constant mean curvature grows. The surface tensiong asso-
ciated with an interface between unlike polymer melt do-
mains scales asx1/2 f30g. A patch of areadA of a curved
interface experiences a force due to the surface tension
which is given by 2HgdA f31g. Since these micelle configu-
rations are saddle points of the free energy, we know that the
force due to the tension pulling inward on the interface is
balanced by a net force pulling outward on the micelle inter-
face; that is, the interface must be in mechanical equilibrium.
In copolymer micelles the compensating forces are due to a
difference in the tension of the chains in the core and coronal
domains. Therefore, variation of the mean curvature of the
interface provides a direct measure of the chain tension pull-
ing on the interface. Regions of high interfacial curvature,
towards the edges and vertices of the bcc Voronoi polyhe-
dron, correspond to regions where the coronalB domains
pull relatively strongly on the interface. Conversely, rela-
tively flat regions on theAB interface, towards the nearest-
neighbor faces of the polyhedron, indicate that the chain
stretching is relatively low.

IV. CONCLUSION

From our analysis we see that for elastically asymmetric
copolymers the polyhedral shape of the lattice Voronoi cell
forces the micelle configuration to deviate drastically from
the limit of uniform interfacial curvature. While we have
argued that in the limit of perfectly polyhedral interfaces the
A15 phase is most stable among the sphere phases and that
very elastically asymmetric micelles approach this polyhe-
dral limit in regions where sphere phases are thermodynami-
cally stable, it has yet to be shown that for small distortions
sfor a&0.35d the minimal Voronoi cell area argument should

FIG. 6. sColor onlined A view of the Voronoi cell of the bcc
lattice, a truncated octahedron, with half of one hexagonal face and
a quarter of one square face removed to reveal the inside. The edges
are drawn as black lines, the outside is shown as blue, and the
inside is shown as yellow. The vectors connecting the center of the
cell to the corners along thes210d directions and the nearest walls
along thes111d directions are shown.

FIG. 7. Plot of the measured distortiona as defined in Eqs.s28d
and s29d, measured from SCFT results for the bcc phase of
branched copolymers melts for generations 2øgø6. For compari-
son the dashed line shows the same distortion for linearAB diblock
copolymer melts.
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apply. For example, the reduced area of theg=6, bcc inter-
face of Fig. 8 is 1.0094, to be compared to the reduced area
of the truncated-octahedron of the bcc Voronoi cell, 1.0990.
In this sense,AB interfaces of physical micelles seem to be
distorted less than about 10% towards their Voronoi polyhe-
dra. Nevertheless, we argue that the polyhedral interface
limit of the micelle configurations sets the scale of the frus-
tration. While the true micelle interfaces are some interpola-
tion between a spherical and polyhedral shape, the scale of
the frustrated free energy is set by the polyhedral interface
upper bound. As mentioned above, in the limit of polyhedral
interfaces asxN→`, SST predicts thatFbcc=1.0014FA15,
andFfcc=1.0061FA15. We can compare this prediction to the
results of our SCFT calculations along the Hex-A15 phase
boundary atxN=40 for g=5 branched copolymerssat f
=0.340d for which we find FA15=6.296nkBT, Fbcc
=6.314nkBT, and Ffcc=6.326nkBT, corresponding to 0.28%
and 0.46% higher free energy than theA15 phase for bcc and
fcc phases, respectively. On the scale of these small free
energy differences, the analysis of our geometrical limit is a
necessary component of any rational explanation for lattice
choice. Therefore, while such a calculation has yet to be
carried out, we expect that a more detailed SST analysis of
the relaxed configurations of micelle interfaces will bear this
argument out.
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APPENDIX: SPECTRAL SCFT

Following Matsen and Schickf15,16g we define a set of
orthogonal basis functionsf isr d, which have the periodic

symmetry of our copolymer phase. We expand all of the
necessary functions of position in this basis, so thatgsrd
=oigi f isr d. For example, the bcc phase of spheres can be

described by the set of functions withIm3̄m symmetry. The
functions are normalized such that

V−1E dr f isr df jsr d = di j . sA1d

In addition, we demand that these functions be eigenfunc-
tions of the Laplacian operator so that

¹2f isr d = −
li

D2 f isr d, sA2d

whereD is the length scale of the periodicity of the system.
The set of functions is ordered in an increasing sequence in
li, and l1 is set to 0for f1sr d=1g. Because the product of
two basis functionsf isr df jsr d has all the symmetries of the
basis, it belongs in the same space of functions as our basis.
Thus, we can write the product as an expansion in our basis
functions. We define the coefficientsGi jk of the expansion so
that

f isr df jsr d = o
k

Gi jk fksr d. sA3d

Alternately, given the set of basis functions invariant under
all of the symmetry operations of the group, this coefficient
can be computed byGi jk =V−1edr f isr df jsr dfksr d.

With these definitions and a finite Fourier expansion of all
functions of position we can rewrite the diffusion equation
s17d as a matrix equation

−
]qi

†

]s
=Ho j

Aijqj
†, for s0 , s, s1,

o j
Bijqj

†, for s1 , s, sg,
J sA4d

where we have defined the matricesAij andBij ,

FIG. 8. sColor onlined TheAB interfaces extracted from the SCFT calculationfthe surfaces at whichfAsr d=0.5g for the bcc phase along
the thermodynamic phase boundary separating spherical and cylindrical morphologies:sad for linear diblocks atf =0.166, sbd for g=2
branched copolymers atf =0.275, andscd for g=6 branched copolymers atf =0.350. The interfacial distortion at these points corresponds to
measured values ofa=0.011, 0.124, and 0.321, respectively. The surfaces are shaded according to the local mean curvatureH, measured in
units of the average mean curvature,kHl. The variation of the mean curvature provides a direct measure of the variation of the polymer chain
tension at the interface, due to the polyhedral environment of the lattice Voronoi cell. The standard deviation of the curvature,sH, for each
surface is given in units ofkHl.
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Aij ; −
Na2li

6D2 di j − o
k

wA,kGi jk , sA5d

Bij ; −
Na2li

6k2D2di j − o
k

wB,kGi jk . sA6d

Since these are symmetric, real matrices we can diagonalize
Aij and Bij by orthogonal transformations, such that
ok,lfOA

TgikAklfOAgl j =Aidi j and ok,lfOB
TgikBklfOBgl j =Bidi j ,

whereAi andBi are the eigenvalues ofAij andBij , andfOAgi j

andfOBgi j are the orthogonal matrices which diagonalizeAij

andBij , respectively. The matrix

TA,i j
† ss8 − sd ; o

k

fOAgik exph− Akss8 − sdjfOAg jk sA7d

transfers theA-block solution to Eq.sA4d from s to s8, and
the matrixTB,i j

† ss8−sd does the same for theB-block solution.
Using these matrices we can write the solutions forqi

†ssd,

qi
†ssd =Ho j

TA,i j
† ss− s1dL j

†ss1d, for s0 , s, s1,

o j
TB,i j

† ss− sadL j
†ssad, for sa−1 , s, sa sa Þ 1d,

J sA8d

whereLi
†ssad are the boundary conditions forqi

†ssd at sa
−:

Li
†ssad = V−1E dr fq†sr ,sa

+dgha+1f isr d. sA9d

Thus, we have thatLi
†ssgd=di1.

In order to computeLi
†ssad for the lower generations, we

define the function

ci
smdssad ; V−1E dr fq†sr ,sa

+dgmfisr d. sA10d

Given this definition we haveci
s1dssad=qi

†ssa
+d and, of course,

Li
†ssad=ci

sha+1dssad. Using Eq.sA3d and the fact that the Fou-
rier expansion ofq†sr ,sa

+d=oiqi
†ssa

+df isr d, it can be shown
that

ci
smdssad = o

j ,k
Gi jkqj

†ssa
+dck

sm−1dssad. sA11d

In order to findqi
†ssd for the sg−1dth generation, we first

computeqi
†ssg−1

+ d by Eq. sA8d and Li
†ssgd=di1. Using Eq.

sA11d we can then iteratively computeci
smdssg−1d for all m up

to hg−1. Then we will haveLi
†ssg−1d and qi

†ssd for sg−2,s
,sg−1. We can repeat this procedure until we haveqi

†ssd
down to the first generation. At this point we have computed
the probability of a chain diffusing from its branched,
B-block tips down to the end of theA block. That is to say,
we have computed the single-chain partition functionQ /V
=q1

†ss0d.
To find qissd we have to solve the same matrix equation as

Eq. sA4d except with a plus sign on the left-hand side. Again,
the transfer matrix for the “reversed-motion”A-block solu-
tion is defined by

TA,i jss8 − sd ; o
k

fOAgik exphAkss8 − sdjfOAg jk,

sA12d

andTB,i jss8−sd is defined similarly. The solution forqissd is

qissd =Ho j
TA,i jss− s1dL jss1d, for s0 , s, s1,

o j
TB,i jss− sadL jssad, for sa−1 , s, sa sa Þ 1d,

J sA13d

whereLissad are the branching point boundary conditions,

Lissa−1d = V−1E drqsr ,sa−1
− dfq†sr ,sa−1

+ dgha−1f isr d.

sA14d

Similar to the identitysA11d, it can be shown that

Lissa−1d = o
j ,k

Gi jkqjssa−1
− dck

sha−1dssa−1d. sA15d

We use the fact thatLiss0d=di1, the boundary condition for
thes0 free end, to computeqissd from Eq. sA13d for the first
generation. We can then use Eq.sA15d along withqiss1

−d and
ci

sh1−1dss1d to find qissd for the second generation. Repeating
this process we can findLissad andqissd for all generations.
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Using bothqissd andqi
†ssd we can use Eqs.s24d ands25d

to compute the Fourier amplitudes of the monomer concen-
trationsfA,i andfB,i,

fA,i =
1

q1
†ss0dEs0

s1

dso
j ,k

qjssdqk
†ssdGi jk , sA16d

fB,i =
1

q1
†ss0d oa=2

g

NB,aE
sa−1

sa

dso
j ,k

qjssdqk
†ssdGi jk . sA17d

Finally, the single-chain partition functionQ and the Fou-
rier densities are used to compute the mean-field free energy
per chainsup to an additive constantd:

F

nkBT
= − ln q1

†ss0d − xNo
i

fA,ifB,i . sA18d

Now we need only to find the Fourier components of the
field configuration,wA,i andwB,i, so that we satisfy the self-
consistency relations

wA,i − wB,i = xNsfB,i − fA,id, sA19d

di1 = fA,i + fB,i . sA20d

Clearly, we havefA,1= f and fB,1=s1− fd, by definition.
Moreover, we can setwA,1=xNs1− fd and wB,1=xNf. Since
the monomer distributionsfA,i andfB,i depend functionally
on the fieldswA,i andwB,i throughQfwA,i ,wB,ig, Eqs.sA19d
and sA20d present a complicated set of nonlinear equations.
These are most easily solved by computingfA,i andfB,i for
some initial guess ofwA,i andwB,i. ThenwA,i andwB,i can be
adjusted towards a solution of Eqs.sA19d and sA20d. The
computation then proceeds iteratively until the self-
consistent solution is found.
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